

R&D Activities at the Laboratory of Sorption Processes

Prof. Dr. -Ing. Belal Dawoud

Laboratory of Sorption Processes (LSP) OTH Regensburg Technical University, Regensburg, Germany

Co-authors

Makram Mikhaeil, M.Sc.

Jeremy Weindler, M.Sc.

Tuesday, 02.05.2023

Contents

Sustainable and reliable adsorptive machine

Designing an efficient Adsorber/Desorber Plate Heat Exchanger (APHE)

Ohmic heating

Experimental setup and first results

Contents

Sustainable and reliable adsorptive machine

Designing an efficient Adsorber/Desorber Plate Heat Exchanger (APHE)

Ohmic heating

Experimental setup and first results

Open-Structured Asymmetric

Closed-Structured Asymmetric

Tested Commercial Plate Heat Exchangers

- Gas / Liquid plate heat exchangers
- Each Consists of stainless steel plates brazed together with nickel.
- Designed to handle asymmetric volume flows with exceptionally high performance.

Studying the effect of the heat and mass transfer characteristic lengths (HTCL&MTCL)

Test frame (TF) #2

SCP - COP Chart

The SCP (black continuous lines) and COP (blue dashed lines) for the <u>OTH APHE</u> calculated at *Tev*=10°C, *Tcond*= 35°C and *Tdes*=90°C

Mikhaeil, M., Gaderer, M., and Dawoud, B. (2022). On the Application of Adsorber Plate Heat Exchangers in Thermally Driven Chillers; An Experimental and Analytical Study. *Appl. Thermal Eng., 220, 119713*.

Comparison between the performance of the two investigated APHEs and an optimized finned tube adsorber plate heat exchanger at operating conditions of 10/35/90°C

	Newly Introduced APHE	GLX30 APHE	Finned tube adsorber heat exchanger
$ au_{ads}, s$	257.7	586.1	243.5
R^2	0.9957	0.9913	0.9908
τ_{des} , s	81.1	103.0	105.5
R^2	0.9834	0.9813	0.9942
Optimum t _{ads} , s and t _{des} , s	150, 80	240,120	200, 125
SCP _{max} , W·kg ⁻¹	263.6	131.9	268.0
COP _{SCPmax}	0.242	0.147	0.51
SCP_{max}^* , W·kg ⁻¹	308.6	154.5	268.0
$COP^*_{SCP^*_{max}}$, -	0.271	0.168	0.51
target <i>SCP</i> [*] , W·kg ^{−1}	268.0	268.0 can't be realized	268.0
COP [*] target SCP*, -	0.42		0.51
t_{ads} , s and t_{des} , s at target SCP^*	380, 180		200, 125

OTI- OSTBAYERIS TECHNISCH REGENSBUR

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

SP LABORATORY OF SORPTION PROCESSES

Optmized closed structured APHE

Specifications of the new APHE, designed for <u>10 kg of Siogel grains</u>

Specification	value
HTF's inlet and outlet ports diameter (mm)	18
Thickness of one plate (mm)	0.3
Thickness of end plates (mm)	2
Number of plate-pairs, in case of gap between	20
each two successive plate-pairs = 6 mm	
Width of the PHE (mm)	280
Length of the PHE (mm)	500
Volume of the adsorbent domain (L), with gap	13.16
between each two successive plate-pairs = 6	
mm	
Volume of the HTF domain (L)	0.808
Volume of the metal domain, with end plates	2.337
(L)	

At 10/35/90°C operating conditions, the new closed-structured APHE provides 158.6*W*/*kg* at target *COP* of *0.5*, while the open structured APHE of OTH could not achieve a *COP* higher than 0.458.

The SCP (black solid lines) and COP (blue dashed lines) calculated for the new APHE. The red cross symbols refer to the operating points at a COP target of 0.5. The green point refers to the operating points at a COP target of 0.6 at 10/30/90 °C

Contents

Sustainable and reliable adsorptive machine

Designing an efficient Adsorber/Desorber Plate Heat Exchanger (APHE)

Ohmic heating

Experimental setup and first results

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

SP LABORATORY OF SORPTION PROCESSES

Ohmic-Heating Setup

Scheme of the developed Ohmic-Heating Prototype based on the continuous ow principle.

Plant schematic with the main components, measuring and control devices and illustration of the communication with the central LabVIEW based measuring and control system.

Photo of the laboratory test facility with the ohmic heating reactor, sensors and actuators and the electric boxes.

Ohmic-Heating: Working principle

Ohmic heating generates heat in the fluid itself. This is achieved by applying an **alternating current** across a **conductive fluid** with a specific electrical resistance, which results in a **direct conversion of the electrical energy into heat** through the generation of the so-called **joule energy**.

SORPTION FRIENDS III

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

SP LABORATORY OF

First results

Results a test mode exploring the dynamic thermal response of the ohmic heating reactor at a constant volume flow rate of 71.8 l/h and a step function of the electrical power of 3000W at the time 0 seconds at five different return temperatures

Test mode on the response time of the ohmic heating reactor at constant volume flow rates and a step function of the electrical power to 3000W at the time 0 seconds. Representation of five operating cases with different volume flow rates and corresponding stationairy temperature lift in 5K steps from 15K to 35K. Marked time points of the RUT τ_{50} (triangle), τ_{80} (diamond) and τ_{95} (pentagon).

Key finding	Key finding	
Temperature lift is independend from return temperature with a measured conversion efficiency of $97.52\% \pm 0.16\%$	Targeted temperature lift can be achieved in a very short time even with low electrical power	

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

SP LABORATORY OF

Future applications

Heating of LiBr-Solutions

Desalination of seawater

Organic synthesis in the chemical and pharmaceutial industry

OSTBAYERISCHE TECHNISCHE HOCHSCHULE REGENSBURG

LSP LABORATORY OF SORPTION PROCESSES

Thank you very much for your kind attention. Questions are more than welcome!